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Summary

This report addresses two directions in which reuse of Ada software might be encouraged for
realtime applications. These two directions are:
(1) improvements to the Ada language through the Ada 9X revision process;
(2) development of more common (i.e. standard) package interfaces.

Given that the design of the Ada programming language predates the slogan "software reuse",
Ada supports software reuse rather well. However, there remain some ways in which Ada could
be improved. Most serious of these is the lack of uniformity across Ada implementations of
certain features important to realtime applications, like storage dynamic management and task
scheduling. Also important are a few gaps in Ada's representation-specification mechanism.

In the area of common interfaces, runtime environment (RTE) interfaces are especially impor-
tant to realtime applications. Three kinds of RTE interfaces may be distinguished: application-
RTE; compiler-RTE; RTE-RTE. Agreement on each of these can further software reuse.

The Model Runtime System Interface (MRTSI) [6] is a proposed model for a standard compiler-
RTE interface, developed by the ARTEWG. If successfully adopted, such a standard could foster
reuse of Ada runtime system implementations across compilers, and reuse of compilers across
runtime system versions.

The IEEE Portable Operating System Interface for Computer Applications (POSIX) Ada bind-
ing (1003.5) and the POSIX realtime extension (1003.4) are examples of proposed standaid
application-RTE interfaces. If successfully completed, these interfaces could lead to more reuse
of applications across computer systems, and promote reuse of components across applications.
Both of these interfaces could foster reuse in a wide class of Ada applications, including com-
pilers and software tools.

The POSIX realtime extension could especially benefit realtime applications, by providing
features missing from Ada. While supporting realtime applications within a general purpose
operating system like POSIX is bound to exact a significant compromise in performance, there
are benefits that may sometimes outweigh the performance loss. Potential benefits include
being able to combine cooperating realtime and nonrealtime applications in a single system,
and being able to prototype and debug realtime applications in a development environment.

Both the MRTSI and POSIX 1003.4 and 1003.5 activities have not yet reached implementa-
tion, but promise significant rewards. More effort is needed to see these standards through to
completion, and to insure that they provide the features needed by realtimc applications.

The area of RTE-RTE interfaces looks equally promising. Standard interfaces for RTE compo-
nents that typically need modification to fit particular realtime applications, such as I/O and
clock drivers, would assist in the reuse of realtime application code across Ada implementations,
.uid the reuse of Ada implementations across different application hardware configurations. So
far, there does not Vot tpp, r to 1, an- orgai,,u.d afiy Th1rissed oui this are_, but it deser-es
attention.

Several issues raised by this study appear to deserve further attention. These are detailed in
the conclusion to this report.
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1 Introduction

1.1 Scope.

This report examines the roles of several factors affecting the potential reuse of Ada software for
realtime applications. More specifically, it examines the roles of the Ada language and common
package interfaces. The Ada language is evaluated with regard to how well it meets several
rcquireirents for supporting reuse, and how it could be revised to support reuse better. The
concept of common "bridge" package interfaces is introduced as a technique for enabling more
software to be reused. Three specific common package interfaces are examined in detail. These
are: the MRTSI; the POSIX Ada binding (1003.5); the POSIX realtime extension (1003.4).
These interfaces are considered with respect to their individual potential for promoting software
reuse, their interactions, and their potential for supporting and complementing Ada for realtime
applications.

1.2 Approach.

Information in this report has been gathered from several sources, including: the experience
of the principal investigator as a developer of an Ada compiler and two Ada runtime systems;
participation in the ARTEWG and the POSIX (1003.4 and 1003.5) standards groups; the
International Workshops on Real-Time Ada Issues (1987, 1988, 1989), the Ada 9X Requirements
Workshop (1989); experience with a partial prototype implementation of the POSIX realtime
extension.

Of the three interfaces examined in detail, the least is known about the POSIX realtime ex-
tension. The C-language binding of the POSIX realtime extension is still in draft, no work has
yet been started on an Ada binding, and there are no complete prototype implementations.
In contrast, the MRTSI exists as a complete document, including Ada package specifications,
and has been prototyped. The draft POSIX Ada binding is also fairly complete, and covers
functionality for which C-language implementations have existed for many years.

In order to gain a better understanding of the POSIX realtime extension, as part of this project,
work was started on a prototype implementation. This work involved modification of the Sun
Microsystems UNIX' operating system (written in the C-language) to support certain features
of the draft POSIX realtime extension, development of a very crude Ada binding for these
features, and experimentation with them.

1.3 Background

What is software reuse? "Software reuse" is currently a popular slogan in the Ada and
software engineering community. It denotes a tactic for software development: to look carefully
for ways to use existing software before dashing off to write more.

'UNIX is a registered trademark of AT&T.



Kinds of reuse. The tactic of software reuse can be applied at any scale and any level of
abstraction. The scale of reuse can range through: (1) using all of an existing piece of software,
instead of developing a new one; (2) modifying or upgrading an existing piece of software,
retaining most of the existing design and code; (3) using fragments of existing software in a
new design. If only fragments are reused, the fragments may range from concrete code, such
as subprograms and data types, to abstractions such as scheduling policies and mathematical
models.

Benefits of reuse. Software reuse can pay off in several ways, including increased reliability,
reduced development effort, more predictable size and performance, reduced code size, and im-
proved readability. Reliability is increased because reused software has been previously tested;
therefore it should be more reliable than new software. Flaws are likely to have been discov-
ered, and corrected. Development effort is reduced when reusing existing software by skipping
the steps of detailed component design, coding, and debugging. Size and performance require-
ments (processor time and memory) of reused components are known; thus, system-level size
and performance problems can be detected earlier than with new software. Total code size of a
large system may be reduced by sharing software components across subsystems. Readability
is improved if shared components are well designed, since there are fewer total components.

Limitations to reuse. The degree to which software reuse can be effective is limited by
several factors. Differences in real requirements which may prevent code developed for one
project from being reused on another. There may also be confusion between arbitrary design
decisions and real requirements, so that new software appears to be required, even though
existing code could be used. Cultural differences between programmers may make it hard for
a programmer to understand code or documentation that another has written, or to see how
it can be used in a new program. Even where programmers are trained in the same way of
thinking and writing, it may take more time to understand existing software well enough to
decide whether and how to reuse it than to write new software. Programmers also tend to have
a psychological drive to write new software. Administrative policies can seriously discourage
reuse; for example, by measuring productivity in lines of code or not allowing charges for time
spent reading existing code. Given large volumes of potentially reusable code, information
retrieval becomes a problem. Most of these limiting factors are hard to address technically,
since they involve primarily political, social, and psychological issues.

This paper addresses two factors which appear more amenable to technical solutions. These
are (1) the limitations imposed by programming languages and (2) the lack of standard in-
terfaces. It seems to be a good time to think about these two subjects, since the Ada 9X
language-standard revision project offers a unique opportunity to improve the Ada program-
ming language's support for software reuse, and several secondary standards activities that are
currently under way offer opportunities to develop other needed common interfaces.

1.4 Organization.

Section 2 examines the the Ada programming language with respect to support for software
reuse. Section 3 discusses the importance of common Ada interfaces for software reuse. The
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three sections after that examine specific interfaces with potential impact on reusable realtime
applications: Section 4 deals with the MRTSI interface, Section 5 deals with the POSIX Ada
binding, and Section 6 deals with the POSIX realtime extension. Section 7 is the conclusion.

A more detailed report of the work on pio'otyping portions of the POSIX realtime extension
is provided as Appendix A and a realtime demonstration program constructed for the realtime
extensions is described in Appendix B.
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2 Ada

In a primitive sense, every programming language may be viewed as a system of reusable
software components. The language defines a set of primitive components and a notation for
combining these components. The programmer uses this notation to specify how the language-
defined components are combined in each particular program. The compiler puts together
the program, following this specification. It translates each instance of a language feature
into machine instructions, according to a (reusable) translation template, which is designed
by the implementor of the language feature. The translation template for some features may
be very concrete (e.g. for literals and arithmetic operators) and for others (e.g. data types,
subprograms, and tasks) it may be rather abstract.

The more interesting kind of software ieuse involves larger, programmer-defined components.
For a language to support this kind of reuse it must be extensible. That is, programmers must
be able to define their own coding templates, and the notation by which they can combine
instances of these templates to construct new programs. Languages vary quite widely in the
degree to which they support this level of reuse.

Though supporting software reuse was not one of the explicitly stated design goals of the Ada
programming language [3,4], Ada does a very good job of it. This is not surprising, since
the designers did consciously attempt to support application portability, and programming
techniques that are closely related to software reuse, including abstraction and bottom-up
development. Some specific Ada features that support software reuse include packages, strong
typing, and generics.

To see more precisely how Ada supports reuse, and how it might be revised do better, six key
issues will be examined. These are: (1) partitioning; (2) importation; (3) parameterization; (4)
information hiding; (5) component extensibility; (6) portability (i.e. independence of software
from the target machine architecture and the language implementation).

2.1 Partitioning

A programming language should provide some way of partitioning programs into potentially
reusable modules. Ada's separately compilable units, in particular packages, provide this capa-
bility.

2.2 Importation

A language must provide an importation mechanism; i.e., a way of incorporating existing soft-
ware components into a program by reference, without introducing name conflicts. Ada's library
units and context clauses serve this function very well. Name conflicts may be resolved via op-
erator overloading, qualified names, and renaming declarations. This set of importation and
renaming mechanisms appears to be functionally complete.

Ada's renaming mechanism does have some ugly aspects. For example, it is annoying that
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renaming dedar. ions for constants and itypes must mazquerade as variable and subtype dec-
larations. It can also be annoying that renamings are considered distinct from the original
declarations for the purpose of checking conformance of jubprogram specifications and type
di:scriminant-parts. Fortunately, one can work around these inconveniences.

2.3 Paraineterization

To support software reuse a language should provide a parameterization mechanism. Parame-
terization allows a component to be reused in a variety of contexts, by allowing the specification
of certain details to be deferred to each context where the component is used. Ada generic units,
which were primarily conceived as a mechanism for reducing code size ([4] p. 235), also pernL:
compile-time parameterization. This mechanism goes a long way toward supporting software
reuse. Still, there are several respects in which it is not complete.

Gaps in generic parameters. It is instructive to compare the language rules for generic
parameters with those for renair'ngs, since the parameters of a generic instantiation serve
an analogous function to the imported declarations of a conventional program unit. For full
programming generality, one would hope that anything that could be named could also be
specified by a generic parameter, just as anything that can be named can be imported and
renamed. Consider tb' following table:

Entity Renaming Generic Formal

discrete type ok ok
integer type ok ok
fixed pt. type ok ok
fit. pt. type ok ok
access type ok ok
record type ok -- private, limited private
task type ok -- limited private
private type ok ok
ltd. priv. type ok ok
variable ok ok
constant ok ok
univ. constant ok not supported
exception ok not supported
package ok not supported
subprogram ok ok
entry - procedure -- procedure
task ok ok

As can be seen from the table, there axe gaps in the generic paxameterization mechanism
for record types, task types, universal constants, exceptions, and packages. While there are
understandable reasons for these gaps, they are not completely necessary and they do limit
software reuse. Let us consider how these gaps might be closed &hrough revisions to the Ada
language.

Universal constants. The restriction on universal constants means that the ranges, precisions,
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and representations of nu-neric types doclared within a generic software component are fixed at
the time it is written. This restriction is probably a consequence of the intent that generic bodies
and instantiations ca be checked for correctness independently ([4] p. 266). In particular, this
restriction helps to insure that vidues of static expresosions within t,.e generic body do not
depend on the values of generic parameters. It is certainly a serious limitation on software
reuse, but the cost of relaxing it is also high.

Exceptions. The restriction on exceptions is probably also a consequence of the principle
of independence of bodies and instantiations (cited above). Without this restriction, generic
formal exceptions could provide aliases for one another and for directly named exceptions in
handlers, making it impossible to check for overlapping cases until instantiation. This could
be solved by allowing generic formal exceptions only in raise statements, or by checking for
aliasing in a fashion similar to the way checking is done for similar requirements on generic
formal types (,ee next paragraph).

A precedent. The -ase for allowing generic universal constants and exceptions is not com-
pletely hopeless. There is at least one precedent for violating the principle of idependence of
generic bodies and insta Utiations. Notably, certain usages of a generic formal type within the
gQ eric body require that the corresponding actual type in each instantiation must not be an
unconstrained array type or a discriminated type without default values for the discriminants.
(This is very hard to check, especially if the use is in a separately compiled subunit that is added
after the generic body and instantiations have been. compiled.) Unless this rule is changed, there
is a precedent for adding other such cross-dependences.

Types with components. Record types, task types, and packages have one common at-
tribute: they include exported components, which must be taken into account in matching
formal with aciual generic parameters. This is not an insurmountable problem. A consistent
notion of matching can be defined recursively. Suppose a generic formal record type declara-
tion is allowed, with components following the syntax of formal object declarations. A generic
actual parameter type can be said ti match this formal type if each component of the formal
type has a specified corresponding component with a matching type. This is illustrated in the
example below. (Notice that this example makes another extension, to allow incomplete type
declarations in the generic formal part.)
generic type NODE;

type REC; type LINK is access NODE;

type POINTER is access aEC; type NODE is
type REC is record

reYord SIBLING, PARENT: LINK;

I: INTEGER;enXT rcod; end record;
package LISTS is ... package SIBLING-LISTS is
and LISTS; new LISTS(POINTER-> LINK,

REC-> NODE (NEXT-> SIBLING));

Unlike the previous two cases, this extension does not dppear to conflict with the goal of checking
the correctness of generic bodics independently of the instantiations. The chief drawback to
such an extensin seems to be that a compiler could not share object code between different
instantiations. The matching rule for formal private types with discriminants ([1] 12.3.2 (3))
offers a precedent for this extension and suggests a simpler and more restrictive matching rule,
based on positional correspondence f component declarations, which might also permit iure
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code sharing.

An analogous recursive matching rule can be defined for components of packages and entries of
task types.

Subprogram parameters. One of the few way, Ada takes a step backward from other
languages in its support for software reuse is by not having subprogram-types - i.e., not
allowing variables and subprogram parameters which take subprograms as values. This rules
out "call-back" interfaces, which have been used by reusable communication protocols and
windowing toolkits in otheli '-ngi-ages. There is no good reason not to support procedure types
in Ada, since compile-time type checking is possible. Of course, the values of variables and out
or in out parameters of procedure types should probably be limited to subprograms declared as
library units or immediately within library packages, in order to prevent calling a subprogram
from outside its scope. There would be no significant implementation problem, since code-
sharing implementations of generics already need a similar mechanism to handle generic formal
subprograms.

2.4 Information hiding

A programming language should enforce information hiding. Simple, precisely defined interfaces
make components and their interactions easier to understand, and therefore easier to reuse.

Ada takes a big step in this direction, by separating program units into specifications and bod-
ies, and providing private and limited private types. Unfortunately, the separation of interface
specification from implementation is incomplete. Package specifications provide both the in-
formation needed by users and information the language designers felt a compiler would need
to perform efficient separate compilation. This is bad from the point of software reuse, since it
means package specifications may need to be modified to support changes in the corresponding
bodies.

It is ironic that the reason for requiring implementation information in package specifications
is largely obviated by other language complexities. Most of the semantic problems associated
with deferring full declarations of private types and constants to the package body are already
encountered with incomplete type declarations. Moreover, Ada is sufficiently complicated that
some compilers already defer final code generation until package bodies are seen, in order to
produce more efficient code. It therefore appears the information provided in ,e package
private part is not essential.

2.5 Component extensibility

To support software reuse a language should provide a mechanism for extending the function-
ality of existing components. Ada does not do this very well.

For example, consider the POSIX Ada binding. This is a standard to which a series of extensions
will be added as time goes on. There are some logically private types for which operations
are defined in several basic POSIX packages. More operations on these types will be defined



in packages that will be added to the standard in the future. Implementing some of these
operations may require access to the full type representation. It is essential that such extensions
not require modification t. the basic POSIX package interfaces.

Some other languages (e.g. Smalltalk) provide an "inheritance" mechanism to allow this sort
of reuse. With inheritance, an extension package can inherit the types and operations of the
package it extends, so that only the new operations require new code. Such languages mostly
do not enforce information hiding.

If information hiding is not important it is easy to write inheritable packages in Ada. No private
types are used: the full declarations of all types are included in the package's visible part, so
they can be visible in the bodies of packages that extend it.

If information hiding is important, it appears the only way to solve this problem in Ada is to use
unchecked conversion within the extension package body. (Such a solution is sketched below.)
Whether this solution is acceptable appears to be a matter of taste. Information hiding is still
preserved for the users of the packages. and "with UNCHECKEDCONVERSION;" in the context
makes it clear that the extension package body is doing something that violates information
hiding.

package CORE is
type T is private; t CORE,
... -- some operations on T package EXTENSION is

private function F(X: CORE.T) return CORE.T;

.. -more operations on Ttype T is ... ; -some type definition ..-- oropatn nT
ten COend EXTENSION;

end CORE;

with UNCHECKEDCONVERSION;
package body EXTENSION is

type XT is ... ; -- duplicate of CORE.T's full definition
function FORCE is new UNCHECKEDCONVERSION(CORE.T,XT);
function FORCE is new UNCHECKEDCONVESION(XT,CORE.T);
function SOMEOPERATION(X: XT) return XT is
begin ... -- something that requires visibility of full type XT.
end SOME-OPERATION;
function F(X: CORE.T) return CORE.T is
begin return FORCE(SOMEOPERATIO! (FORCE(X)));
end P;

end EXTENSION;

It is not clear that this problem could be solved much better, even if one were willing to change
Ada radically. In fact, there seems tc- be an inherent conflict between information hiding and
extensibility. One compromise, adopted by C++, is to distinguish two classes of importation:
"hostile" users are only allowed to import declarations from a package'b visible part, while
"friendly" packages are allowed to import declarations from its private part and body.

This hostile/friendly distinction might be added to Ada, perhaps by adding a new attribute
and extending the context clause to semantics to allow a package body to be imported by
friends (with package- name'body;), but it is not, clear whether this is much better than with
UNCHECKED-CONVERSION;. More protection could be added by requiring the core package spec-
ification to explicitly name all the friendly packages, but then this would defeat our goal of
being able to reuse and extend the package without modifying its specification.
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If a package is generic, extending it is still more difficult, since each instantiation of the extension
must match up with a compatible instantiation of the core package. While the unchecked
conversion technique may work between instantiations with identical formal parameters, it is
risky in general, due to the complex ways compilers sometimes translate generic instantiations.

2.6 Portability

Portability is an important aspect of software reusability. To be portable, application code
must be both independent of the target machine architecture and the programming language
implementation. The ideal of portability is to be able to take a software component compiled
with one compiler and tested on one machine, compile it with a different compiler, run it on a
different machine, and obtain equivalent results.

Writing portable code requires two things of the programming language: (1) it should permit
necessary hardware dependencies to be isolatable; (2) other software components, which do
not interface with hardware devices, should be perfectly portable. Ada partially meets both of
these requirements, though it falls short of the ideal.

Machine independence. For realtime systems there is certainly some limit to machine-
independence. Software that must interface directly to specific application hardware devices,
as is typical in hard realtime embedded computer applications, will need to be modified when
reused in a different hardware environment. However, if such hardware dependencies are encap-
sulated within a few small components, the rest of an application may be machine-independent.

Ada features such as representation clauses and machine-code inserts permit some hardware
dependencies to be specified. Careful use of package interfaces can isolate such machine de-
pendencies from the rest of the program. However, there are some gaps in the coverage of
Ada's machine-specific programming mechanisms, and Ada implementations do not support
these features uniformly. Working around a compiler restriction, such as not allowing hardware
interrupts to be connected to task entries, is likely to force software design changes that cannot
be kept local. Local machine-dependencies thus tend to become global compiler-dependencies.

Implementation independence. The precision of the Ada definition and the rigor of vali-
dation testing make it easier to write implementation-independent components in Ada than in
other languagc-s. However, there remain quite a few implementation-dependencies.

CECOM has produced a new version of the ARTEWG Catalog of Ada Runtime Implementation
Dependencies [81, which contains 155 pages. (This subject is also addressed in 19].) Most of
these dependencies are not likely to seriously limit portability, since one can program to avoid
them. However, some of them cannot be avoided. Let us look at two examples of such critical
implementation-dependencies.

One example of an Ada implementation-dependency is the predefined numeric types, like IN-
TEGER and FLOAT. Since Ada does not specify the range or precisions of these types, code
that uses them is typically not portable. A careful programmer can mostly work around this
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problem by using only numeric types with explicitly defined attributes. One awkward detail
is that there are a few contexts where the standard type INTEGER is required, such as the
operator "**'", and fixed-point "*" and "/". Another weakness of this workaround is that the
resulting proliferation of numeric types makes reuse of components more complicated, due to
extra type conversions. Since agreement on standard primitive types is one of the foundations
of reusable software, Ada should be revised to generalize the operators that are presently only
defined on standard INTEGER and to provide some standard names for numeric types of known
range and precision.

Task scheduling is another example of a serious implementation dependency. One of the orig-
inal motivations for including concurrent programming in the Ada language was to eliminate
dependence on an application-specific executive. Such dependence on features of a particular
executive has been cited as a major obstacle to software component reuse in realtime systems.
Ada failed in this respect, since it has no precisely defined task scheduling policy. Realtime
applications with hard scheduling requirements currently must rely on features of a specific
vendor's Ada compiler or runtime environment.

This lack of standardization poses a portability problem not only for entire applications, but
also for smaller components which may be intended for reuse. For example, consider a package
which includes operations that read and update data stored within the package body. If there
is a possibility that more than one task may use this package, the read and update operations
must be treated as critical sections. The only way to do this in Ada is by rendezvous with a
"server" task. Whether the server task solution is efficient enough to be usable for hard realtime
applications is likely to depend on whether the Ada implementation can recognize such a task
and replace the rendezvous by simple semaphore operations. Also, whether or not the efficiency
of rendezvous is important, differences in the implementation of task priority are likely to cause
portability problems for such a server task.

Ada does not require implementations to support any specific range of task priorities. At the
extreme, this range may be null. In this case, or if the programmer does not specify a priority
for a task, the implementation may use any scheduling policy it chooses. Thus, tasks with no
defined priority may be treated as if they have maximum priority, minimum priority, or some
dynamically adjusted priority. Moreover, there is no defined policy for sharing a processor
between tasks of equal priority. Thus, if a task has no defined priority or has the same priority
as some other independent task there is no guarantee that the task will ever execute. This
seems to mean that portable code must assign a distinct priority to each task; but then this
leads to new problems. The language implementation may not support enough levels of priority.
Even if there are enough priorities, the code of reused components with internal tasks must
be modified for each application, to adjust the priorities of the internal tasks to fit within the
framework of the other tasks in the application.

One ostensible reason for Ada not defining a rigid task scheduling policy is that different appli-
cations may require different policies. If so, a standard way could be provided for an application
to specify its task scheduling requirements, similar to the ways Ada currently provides for spec-
ifying other implementation details like the addresses and sizes of variables. This would reduce
implementation dependence. Moreover, given availability of such user-controllable options, a
default scheduling policy could be defined. Those applications for which the default policy is
adequate would then be guaranteed portable.
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There are quite a few other serious Ada implementation dependencies. Several of them are
explored in [15]. Among these, some of the most critical for realtime applications are in the
areas of dynamic storage allocation and reclamation, and of support for using shared memory to
communicate with hardware, other programs, or an operating system (especially the treatment
of in out parameters, and the pragma SHARED).

In general, Ada would be better for writing portable code if each of the semantic details that
are now implementation-dependent were either specified precisely by the language standard or
put under direct programmer control.

2.7 Prospects for software reuse with Ada

It is certainly practical to reuse software components written in Ada. Among standard high-
level languages, Ada probably supports reuse better than any other. At the same time, there
remain several ways Ada could be improved in this regard. Some such improvements may be
expected as part of the Ada 9X language revision process; but for now, programmers designing
for software reuse need to be very conscious of Ada's limitations.

For realtime applications, Ada's most serious limitations are its implementation dependencies
(including some common implementation deficiencies). Implementation dependencies that do
not affect reusability for general purpose applications can be critical for realtime applications.
Reducing these implementation dependencies, and replacing them by programmer-selectable
options where necessary, is very important.

For now, it makes sense to use Ada's strengths to compensate for its weaknesses. Ada's great-
est strength for software reuse, whether for realtime or other applications, is its support for
abstract interfaces - specifically packages. Package interfaces can separate non-reusable code
from reusable code, by isolating the non-reusable code within the bodies of a few packages.
This enables the reuse of other components.
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3 Common interfaces

Importance of agreement. Common interfaces are an essential part of software reuse. Ev-
ery reusable component has an interface - a set of conventions to which users of that component
must adhere. Agreement on these interfaces is critical to reuse of components.

The Ada language standard defines only a few component interfaces. Reusable software must
depend on other interfaces. Ada defines the bottom level of interfaces, between syntactic
components (e.g. expressions, statements) of a program. It also defines a few higher-level
interfaces, like the packages CALENDAR and TEXTI0. Any others must be defined outside of the
Ada language definition. These may be defined ad hoc or by standards.

Any group of users can agree on standard interfaces, and thereby promote reuse within that
group. The more widely the interface is agreed upon, and more precisely it is documented,
the greater the impact on reuse. The development of standard Ada interface specifications for
frequently-needed components is therefore important to promoting software reuse.

Component dependence, and bridging components. Reuse of software components
requires recognition of dependence between components. Let us say a component, A, depends
on another component, B, if A cannot be used without B, and changes to B may require
changes to A.

Reuse requires adherence to common interfaces on both sides of the reused component. On the
one side, an application that depends on a reused component must meet the interface require-
ments of that component. For example, if the component is an Ada package and the application
calls a procedure in that package, it must adhere to the parameter type requirements of the
procedure (as well as any other constraints, functional or semantic, imposed by the designer of
the package). On the other side, if the reused component depends on other components it must
adhere to the interface requirements of those components. For example, if the body of a reused
package calls a subprogram of another package, it must adhere to the interface requirements of
that other package.

Based on the concept of dependency, Ada software components may be classified as non-
reusable, reusable, or bridging, as follows:

1. Non-reusable component. Neither the specification nor the body of such a component
is expected to be reused, perhaps because it depends on peculiar features of the language
implementation, the application, or the application's hardware environment.

2. Completely reusable component. Both the specification and body of such a compo-
nent is expected to be reusable. Neither the body nor specification of such a component
may depend on a non-reusable component.

3. Bridging component. The specification of such a component is expected to be reused,
but alternate bodies may be required to fit different language implementations or hard-
ware environments. The body may depend on a non-reusable component, but the speci-
fication may not. Bridging components enable other software components to be reused,
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by separating them from dependence on nonreusable components. The packages of the
POSIX operating system interface and the ARTEWG CIFO[7] are examples of bridge
components.

Standard package interfaces can support software reuse in two ways:

1. Directly. A standard package may be a completely reusable component, in which case it
may be incorporated directly into a new program (specification and body).

2. Indirectly. The standard package may be a bridging component, in which case it may
enable other components (that depend on it) to be reused. The body of such a standard
package may need to be rewritten for different environments, but the applications of the
package will not need to be changed.

3.1 The need for secondary standards

The need for standards for common Ada package interfaces outside of those required by the Ada
language definition, has been raised repeatedly. Such standards are typically called secondary
standards because they are based on the Ada language standard, but are not part of it. A virtue
of a secondary standard is that since it is not be part of the Ada language it does not impose a
burden on every compiler vendor in the same way that a new language-defined standard package
would. Developing and maintaining an implementation of a secondary standard is a job for an
application programmer or a third party. The cost need only be borne by applications where
the package is used. Another virtue of secondary standards is that they may be developed and
revised in a more timely fashion than the Ada language.

Several candidates for secondary standards have been brought up publicly. Two examples
are the ARTEWG CIFO and MRTSI. The International Workshop on Real-Time Ada issues
proposed several language extensions that might be suitable as secondary standards, including a
package of low-level tasking operations[14]. The Ada 9X Requirements Workshop found a need
for secondary standards, especially in the area of input and output, citing several examples of
existing standards for which standard Ada interfaces are required, including SQL, LU6.2, GKS,
and PHIGS[15]. Work is under way on secondary standards for Ada in several other areas,
including numerical functions and operating system services. Work also seems to be needed in
the area of data communications and networking.

Realtime applications especially need secondary standards to provide features that are missing
from the standard Ada language, such as control over task scheduling. These features must be
provided by an underlying runtime environment, which may involve one or more of the following:
an operating system; the Ada language implementation's runtime system; application-specific
runtime support code.

3.2 Ada runtime environment interfaces

Three kinds of Ada RTE interfaces may be distinguished. These are: (1) application-RTE
interfaces; (2) compiler-RTE interfaces; (3) RTE-internal interfaces. These are all examples of
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bridging component interfaces.

An application-RTE interface enables an Ada application program to obtain services from the
underlying RTIE. If there is more than one layer of RTE, as when an Ada language implementa-
tion is built on top of a conventional operating system, such an interface may provide visibility
of more than one layer.

Common application-RTE interfaces are important for promoting portability and reuse of code.
Unless such interfaces are standard, portions of application code that invoke RTE services will
need to be rewritten when moved between RTE implementations.

The ARTEWG CIFO packages are an example of application-RTE interfaces which gives access
to the Ada RTE. The purpose of these interface packages is to provide functionality which is
needed by realtime programs but is not provided in a standard form by the Ada language. For
example, one package provides programmer-controlled periodic and event-driven task schedul-
ing.

POSIX is an example of a standard application-RTE interface, to an operating system layer
below the Ada RTE. Such a standard operating system interface can increase the reusability
of application programs which need to make use of operating system services, including Ada
compilers and software development tools. The benefits of such an interface may also extend
to realtime applications.

A compiler-RTE interface enables code generated by an Ada compiler to obtain services from
the underlying RTE. These services are invoked implicitly by compiler-generated code for the
implementation of language constructs that require runtime support, such as dynamic storage
allocation, task creation, and rendezvous. An example of such an interace is the ARTEWG
MRTSI.

Standard compiler-RTE interfaces are most important to compiler vendors who must maintain
compiler and RTE versions for many different hardware environments. Without heavy reuse of
components, this would not be practical. The principle of common compiler-RTE interfaces is
therefore well established within organizations developing Ada compilers.

Common compiler-RTE interfaces are also important to application developers in the realtime
embedded domain, chiefly because such application programmers need to tailor and maintain
project-specific versions of an Ada runtime environment. Embedded realtime applications typ-
ically need to be directly involved in some hardware-dependent operations; for example, time-
keeping and interaction with I/O devices such as sensors and actuators. Worse, the hardware
environment tends to be different for each application, and to evolve during the application's
lifetime. It is therefore necessary for the Ada RTE to be tailored to the application. Tailoring
of the Ada RTE may also be necessary to provide missing features, or to improve performance.

It is often impractical to contract with the compiler vendor to perform such RTE work. Com-
monly cited reasons include time delays due to contractual red tape and vendor workload, and
cost. If an application builder must take on the burden of maintaining a special Ada RTE, a
stable well-documented RTE interface is needed. Moreover, if the reason for this special RTE
is to provide extensions missing from standard Ada, portability of application components may
require supporting versions of this RTE on several machine architectures. Commonality in RTE
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interfaces between compilers can make this much more practical.

An RTE-internal interface is the kind of interface by which one RTE component obtains the
services of another. Such interfaces have not yet been well publicized, but examples can be
found in the proprietary literature of compiler vendors, and in [10,11,12]. If a C-language
binding of the POSIX realtime extension is used to implement Ada tasking, this would also be
an RTE-internal interface. (Portions might even end up as part of the compiler-RTE interface.)

Common RTE-internal interfaces may prove more effective than common compiler-RTE inter-
faces in solving most tailoring problems. It appears that some of the Ada RTE components
that most often need tailoring may be isolated from the rest of the RTE, so that the rest of the
RTE may be reused without change. These components include the interface to the hardware
time-keeping function, dynamic memory allocation, resource management, and task scheduling.
Again, adherence to common interfaces for such components is well established within individ-
ual organizations that develop compilers, out of economic necessity, but it has not received
much public exposure.
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4 MRTSI

4.1 Background

The Model Runtime System Interface (MRTSI) is a document describing a model interface
between the code generated by an Ada compiler and the Ada RTE. This interace isolates
from the compiler that portion of the Ada RTE which is responsible for supporting concurrent
execution of tasks, and isolates this portion of the RTE from the compiler-dependent portions
of the RTE.

The MRTSI interface was published in the ACM SIGAda newsletter Ada Letters, in January
1989 [6), after five major revisions, starting from an original draft produced in the summer of
1987. Input was provided by twenty-five individuals with experience writing Ada compilers,
Ada runtime systems, operating systems, and realtime application programs. Some of this input
was provided directly, at meetings, and some of it was provided in the form of written reviews
received in response to a mailing of Version 1.4 to known Ada compiler developers. Versions 1.3
and 1.5.]. were prototyped and tested in simulation, but no commercial Ada compiler adheres to
this interface. Projects for larger scale implementation and testing of the MRTSI or a derived
interface are under discussion. In particular, the U.S. Air Force has issued an announcement
requesting proposals for a common Ada runtime system demonstration, using two different
compilers.

Thouxgh the MRTSI was not originally intended as a standard, there has been some interest

in using it as a starting point for a standard. Ideally, such an inteface would guarantee

interoperability of compilers and runtime environments, permitting the reuse of Ada runtime
system implementations across compilers. The present MRTSI draft is too loosely specified to
achieve this. It could be tightened up enough to achieve interoperability, but then it would
probably need a specific variant for each target processor and memory architecture. This does
seem practical from a technical point of view.

4.2 Impact on reuse

The main benefits of the MRTSI, or any common compiler-RTE interface, on software reuse
for realtime applications would be through:

1. reuse of Ada RTE components across compilers;

2. reuse of applications which require special RTE features, through replacement of the
compiler-provided RTE by a user-provided RTE (which includes the required special fea-
tures).

An important special case of item (1) is where Ada is used as the implementation language for
an operating system. There is then danger of a circular interdependency of the language and
operating system implementations. A well defined compiler-RTE interface is essential if the
operating system implementation is to be portable across dlifferent Ada compilers.
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4.3 Other benefits of commonality

Recent experiences of MRTSI task force members have brought out other supporting argu-
ments for adoption of an MRTSI-like interface, which go beyond issues of software reuse. Even
very large users (e.g. IBM) have experienced intolerably long time delays in obtaining needed
compiler/runtime system tailoring from compiler vendors, due to red tape or vendor manpower
shortage. A MRTSI-like interface would allow the user to make such changes without delay.
Increasing reliance by compiler vendors on "generic" (i.e. machine-independent) Ada runtime
system implementations, in order to support increasing numbers of target architectures, is re-
sulting in worsening performance. This aggravates the need for some customers to develop
and maintain their own runtime system implementations, designed to work efficiently on their
specific architectures. Some development activities requiring special runtime support are using
compilers from more than one vendor for a single application, simultaneously or sequentially
over the life of the project. Differences in capabilities of the RTEs provided by compiler vendors
are a problem. With a clear interface, equivalent RTE implementations could be provided for
the various compilers.

4.4 Future developments

Several difficult or complex issues were intentionally omitted from consideration for the MRTSI
document, in order to make progress. These include: lower-level RTS details (e.g. stack frames,
exceptions); an example of a machine-specific binding (e.g. 1750A); debugging support; I/O
support; support for CIFO extension; support for priority ceiling protocol; multiprogramming
support; multiprocessor support; support for distributed systems; support for systems with
multiple address spaces (e.g. virtual memory).

The MRTSI task force expects to consider RTS interface proposals covering such extensions in
the future, but as separate documents rather than revisions to the MRTSI. This is consistent
with the goal of maintaining each document as a stable target for trial implementations.

The MRTSI task force also intends to begin a study of the POSIX realtime extension, and in
particular a proposal for the inclusion of multithreaded processes, with the intention of providing
feedback to the POSIX realtime extension working group. Where Ada is implemented on top of
a POSIX-compliant operating system, the POSIX realtime extension is likely to be an important
Ada RTE-internal or even compiler-RTE interface.
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5 POSIX Ada binding

5.1 Background

POSIX is a standard interface between an operating system and applications. It is based on the
UNIX system-call interface, but "there are no known Historical Implementations ... that will
not have to change in some area to conform to the standard, and in a few areas the standard
does not exactly match any existing system interface." [5]

POSIX is based on UNIX, and UNIX is thoroughly intertwined with the C language. UNIX
implementations are generally written in C and built on top of the C runtime system. Applica-
tions interface to UNIX through C function calls. For these reasons, all POSIX interfaces are
being drafted first as C-language bindings.

POSIX presently comprises a C-language interface for a set of basic system services, which is an
official standard (IEEE Std. 1003.1-1988), and several extensions and language bindings, which
are in various stages of development. The groups working on these extensions and language
bindings are designated by numbers (1003.2, 1003.3, 1003.4, 1003.5, etc.). Working groups are
added and reorganized from time to time. The two groups whose work is described here are
1003.4 (realtime extension) and 1003.5 (Ada language binding).

Via the extensions, POSIX is sprouting off a multitude of subsidiary standards, covering a
range of subjects including security, networking, databases, system administration, and realtime
computing. There is some danger that this proliferation of standards may get out of hand, but

it may also lead to a more compatible and closely integrated set of standards for the full range
of computing activities than has been seen before.

The POSIX standard is likely to have as great an impact on software development (and reuse) as
the Ada programming language standard. In fact, it may have a larger impact, since it addresses
needs of a larger community. If so, Ada programmers will want to use these interfaces.

5.2 The importance of an Ada binding

Where POSIX and Ada are used together, Ada applications will need an Ada interface to
POSIX. More specifically, several organizations within the U.S. Department of Defense appar-
ently need a standard operating systems interface, and have adopted or plan to adopt POSIX.
However, these same organizations are required to use the Ada programming language. This
gives some urgency to producing an Ada interface to POSIX, including the extensions.

Presently, Ada programs on UNIX systems use the pragma INTERFACE to call C functions.

This imposes some extra computational overhead, but that is unavoidable when crossing be-
tween such dissimilar languages. The more serious problem, that could be corrected by provid-
ing a standard POSIX Ada binding, is that the correctness of the Ada application code at the
interface depends on the data representation conventions of the Ada compiler, and on details
of the Ada RTE implementation. Thus, if there are only C-language bindings for POSJIX stan-
dards, C may turn out to be a more practical language for writing portable/reusable software
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than Ada. This would be sad, since C is a less structured and more dangerous 2 language, which
does not enforce interfaces as reliably as Ada.

Work on other language bindings (at least FORTRAN and Ada) is under way and, due to
strong international pressure, there are also plans to produce "language-independent" versions
of these standards at some point. This work is lagging a year or more behind the development
of C-language standards, and is working at a disadvantage. Not only are the language binding
efforts in a perpetual catch-up position, they are also hampered by some rather deep C language
influences in POSIX. An example of a such a C influence is POSIX's assumption that something
like C's setjmp and longjmp instructions are available. Without these it not possible for POSIX
signal handlers to affect the main program's flow of control.

The POSIX 1003.5 working group has been working on developing an Ada interface to basic
POSIX (1003.1), called the POSIX Ada binding. The group consists of about ten active volun-
teers, and has been at work for approximately two years. Progress has been very slo--, due to
the limited amount of time the group members have been able to spare from their paying jobs.
As of September 1989, the draft is nearly complete. It is still missing one chapter, and some
rationale, and has yet to be reviewed outside the working group.

It is important that there be Ada versions of all the POSIX interfaces. Despite the problem
C-language influences, Ada bindings for most of the POSIX features can probably be produced.
However, given the present rate of progress and the level of support this activity is getting, Ada
bindings for the extensions are likely to be a long time in coming. The Ada binding group
intends to get to the extensions eventually, but has not yet finished with basic POSIX. Still,
progress on the POSIX Ada binding so- far is encouraging. With some more skilled effort and
some continuity of personnel this work is also likely to go faster as time goes on.

5.3 Overview of features

The draft POSIX Ada binding (Version 3.1.2) is a set of Ada package specification- with
associated semantics. It attempts to provide Ada applications with the capabilities eqlu' atent to
those that are provided to C-language programs by IEEE Std. 1003.1-1988. These capabilities
include:

1. Creating new processes (packages POSIX_ Process- Primitives,
and POSIX_ Unsafe- Process- Primitives).

2. Sending signals between processes (package POSIXSignals).

3. Identifying processes (package P OSIX- Process. Identification).

4. Accounting for process time (package POSIX_ Process-_Times).

5. Checking and updating process environment variables
(package PO SIX- Process Environment).

6. Changing the working directory (package POSIXWorking_ Directory).

2For example, consider the statement i - i/*p".l
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7. Checking file permissions (package POSIX- Permissions).

8. Traversing a directory (package POSIX_ Directories).

9. Creating and removing files (package POSIXFiles).

10. Ctiecking the status of a file (package POSIXFile-_Status).

11. Checking file limits (package POSIX_ Configurable- File. Limits).

12. Opening, closing, and and manipulating tles (package POSIXIO).

13. Locking files (package POSIX_ File- Locking).

14. Interacting with terminals (package POSIX_- Terminal-_Functions).

15. Obtaining information about users
(packages POSIX_ User Database and POSLX_ Group Database).

5.4 Evaluation

These packages complement the standard runtime support available in Ada. By providing
traditional operating system services, such as loading and executing programs, creating and
updating permanent files, interacting with users over terminals, and accounting, a standard
POSIX Ada binding will allow writing a wider variety of portable applications than can be
written using Ada alone.

POSIX will support cooper- ion between multiple programs, including programs written in
different languages. POSIX allows programs to initiate the execution of other programs and to
communicate with them via files and signals. This will encourage the reuse of entire programs.
Multiprogramming is especially important for long-running adaptable Ada systems, since each
Ada program is a static entity. Multiprogramming therefore offers the only possibility for
dy namic or,-line reconfiguration of an Ada system.

Because POSIX is a standard interface supported by several widely available commercial op-
erating systems, it is a realistic substitute for promised portable special-purpose Ada software
development environments. There hos been a lot of talk about Ada development environments
and interface standards for Ada tools, such as CAIS[13] and tl i European Community's PCTE.
So far, this talk has ,ot made much of an impact on practice. The outside view :f this activity
are summed up in the words of one POSIX participant not involved in Ada, "For years, there's
been a lot of talk about 'Ada environments', all of which seem, from a UNIX perspective, like
enormous, cumbersome projects that might actually come into widespread use in, if not our
children's lifetimes, perhaps their children's."

In contrast Lo future Ada environments, POSIX is practical and available today. POSIX pro-
vides the basic functionality needed to write portable software tools (along with other appli-
cations) in a simpler and less cumbersome form than other proposed interface standards for
development enironments. If more specialized support for Ada is required, POSIX may be
used as the basis for a portable implementation of some existing interface, such as CAIS. It
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may also make sense to evolve standard extensions to POSIX for language-specific interfaces,
such as data interchange formats and symbolic debugging information.

For Ada implementors, the basic POSIX features (1003.1) are not enough to write a portable
Ada RTE. Here we are talking about the C-language binding, since existing POSIX-compliant
operating systems are based on C. Under these circumstances an Ada binding would not help,
since it, too, would need to be built on top of a C-language interface. Until operating sys-
tems are written in Ada, and support for Ada tasking and I/O are built into the core of the
operating system, non-embedded Ada RTE implementations will depend on services obtained
via a foreign-language interface. It is therefore desirable for Ada language implementors that
the C-language interface to POSIX provide some features that are currently missing, such as
support for memory allocation. The POSIX realtime extension is especially important in the
respect that it may help provide some of these missing features.
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6 POSIX realtime extension

6.1 Background

The proposed draft POSIX realtime extension (1003.4) adds facilities for realtime applicatious
to the features in IEEE Std. 1003.1-1988. As of September 1989, the POSIX realtime extension
document is in its eighth draft, having gone through one "mock" ballot. It may reach formal
ballot by early 1990.

The POSIX realtime extension goes beyond 1003.1 in more ways than functionality. More or
less, 1003.1 standardizes conventional practices of the family of operating systems derived from
AT&T's UNIX. Thus, the implementability and usability of the interface are well established,
and conformant operating systems were already available by the time that standard was ap-
proved. In contrast, there are no well-established conventions for realtime support. Individually,
the details of the 1003.4 interfaces axe new, though they are based on features which have been
implemented in various realtime variants of UNIX. Moreover, when all the features are taken
together, they form a combination for which we have no experience with implementation or
use.

The Ada programming language had similar origins; it, too, was a new combination of sup-
posedly "proven" features, tested individually in other languages. As it turned out, there were
enough differences and unforeseen interactions that it took several years of refinement before
Ada was ready for practical use. However, it is possible that the POSIX realtime extension will
not suffer from such a prolonged birth, since the POSIX realtime extension design process ap-
pears to have had much stronger participation by implementors than the Ada language-design
process.

6.2 Overview of features

Draft 8 of the POSIX realtime extension includes the following features:

1. Binary semaphores. These provide low-overhead mutual exclusion between processes.

2. Process memory locking. This permits a process to request that certain regions of its
code and data always remain in physical memory, thereby avoiding potential delays due
to transferring information between memory and backing store.

3. Shared memory. This allows a process to share specified regions of memory with other
processes.

4. Priority scheduling. This provides two "unfair" scheduling policies for realtime processes,
which insures that they will not be slowed down by less critical processes.

5. Asynchronous event notification. This is a safe, queued mechanism for signaling events
to processes; it addresses several deficiencies ,f the traditional UNIX signal mechanism,
including the potential for lost signals.
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6. Interprocess communication. This is a queued message-passing mechanism, which is in-
tegrated with the asynchronous event notification.

7. Timers. These offer multiple timers, different timer types, and much greater precision
than the time reference available under IEEE STd. 1003.1-1988.

8. Synchronized input and output. This permits an application to insure that data is written
to permanent storage immediately, rather than buffered in memory.

9. Asynchronous input and output. This permits an application process to continue execu-
tion while I/O operations are taking place. It is integrated with the asynchronous event
notification scheme.

10. Realtime files. This is a complex scheme by which an application might negotiate with
the operating system to obtain better performance out of file operations, by choosing from
a set of options (which may or may not be supported by each system). Examples of such
options include contiguous allocation, pre-allocation, and buffering.

11. Threads. These are multiple "light weight" threads of control within a process, similar in
concept to Ada tasks. They all share one logical address space and one set of open files.

6.3 Support for Ada tasking implementation.

Unlike the basic POSIX features (1003.1), it appears that the realtime extension may be a
sufficient basis for an implementation of Ada tasking. There are two ways this might be done:
(1) each task might be a separate POSIX process; (2) each task might be a separate POSIX
thread within a process. If a process-per-task model is used, the relevant POSIX features are:
(a) shared memory, and the operations to manage it; (b) efficient interprocess synchronization
(e.g. semaphores); (c) priority-based scheduling. On the other hand, if a process-per-program
model is used, the main relevant feature is multithreaded processes.

If it is possible to produce a portable Ada language implementation based on POSIX with the
realtime extension, this would certainly make it easier to port Ada applications. This would
also provide programmers with more predictability and control over their applications. The
POSIX realtime scheduling policies are more precisely defined than Ada's, and a programmer
with direct access to the POSIX interface could take more direct control over scheduling and
resource allocation decisions than is now possible with standard Ada alone.

There are several questions that remain to be resolved. First, it is not yet clear whether the
1003.4 working group will be able to reach a consensus on multithreaded processes. There are
many technical difficulties, and some divergence of opinion, so that threads may not be part of
the final standard. If threads are included, it is still not clear whether they will be defined in
a form that will support the requirements of Ada tasking.

The draft POSIX Ada binding associates processes with Ada programs, rather than tasks.
This decision seems to be the only way to avoid a conflict between two essentially incompatible
models of concurrent programming. Perhaps the biggest difference between the two models
is that POSIX processes do not share the same address space, or the same set of open files.
The Ada language definition, says nothing about how main programs are invoked, or how they
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may interact with one another. POSIX is therefore free to define the semantics of processes,
so long as each process is a separate main program execution. This nice division of domains
between POSIX and Ada will no longer apply if POSIX is extended to support multiple threads
of control within a process. Then, there will be an overlap POSIX threads and Ada tasks. If
there is a good match between these two, threads could be a big help to Ada implementors,
but any semantic differences between POSIX threads and Ada tasks could cause trouble.

If the POSIX realtime extension supports multiple threads, any future Ada interface will have
to decide whether to make the POSIX thread operations visible, or to only let Ada applications
use the standard Ada tasking operations. If the thread interface is exposed, it may offer a
useful alternative to Ada tasking, but exposing it is likely to be unsafe if the Ada language
implementation uses it to implement Ada tasks. In the latter situation, an Ada application
calling the POSIX thread services directly could interfere with the Ada tasking implementation.
This is likely to mean that the more useful the roSIX realtime extension is for implementing
Ada on top of a C-language operating system, the less an Ada application can be allowed to
access them directly. In short, two outcomes are likely: either Ada tasks will be POSIX threads,
with only the standard Ada tasking operations, or POSIX threads will exist as an alternative
to Ada tasking, that cannot be mixed.

If multIthreaded processes are not included in the POSIX realtime extension, the only way
to use the realtime extension to implement Ada tasks will be via a process-per-task model.
However, this conflicts with the underlying model of the current draft POSIX Ada binding,
which is a virtual-process per program. This means that if the Ada language implementation
does implement a single Ada program as multiple POSIX processes, the POSIX Ada interface
must hide the existence of all but one of these processes from the Ada program.

No matter whether POSIX ends up supporting threads, and whether Ada tasks will be imple-
mented as threads, there remain technical questions concerning the adequacy of the POSIX
realtime extension to implement Ada tasks. Moreover, there is the question of whether using
the POSIX realtime extension to implement Ada tasks is even desirable, since it might restrict
access by Ada programs to the full functionality of POSIX.

6.4 Substitute/extensinn for Ada tasking

The POSIX realtime extension may provide useful features that are not found in Ada, or which
are more powerful or have more precisely defined semantics than the corresponding Ada fea-
tures. For example, POSIX realtime timers provide more precision and greater functionality
than the Ada delay statement and CALENDAR.clock. POSLX realtime process scheduling is
more precisely controllable than Ada task scheduling. Also, the POSIX event and message-
queue mechanisms offer functionality similar to the Ada rendezvous, that is more flexible and
potentially more efficient. More specifically, they provide a form of asynchronous communi-
cation that seems to be needed in realtime systems, and which Ada has been criticized for
lacking.

POSLX also may provide more appropriate abstractions than Ada, The semaphores, events,
and messages provided by the POSIX realtime extension is closer to conventional models of
concurrent programming than Ada's rendezvous. Moreover, it can be argued that by providing
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several distinct standard communication object types (as compared Ada, where the programmer
must construct equivalent ad hoc substitutes using intermediary tasks), the POSIX realtime
extension encourage the programmer to design at a higher level of abstraction.

Application programmers will not want to do without useful POSIX features, just because they
are programming in Ada. It is therefore important to develop an Ada binding for the POSIX
realtime extension that passes through any advantages POSIX may offer - i.e., that extends
the functionality of Ada in a compatible way.

It is still too early to see how well the POSIX realtime extension can be interfaced to Ada, since
the C-language binding is still evolving, and work on an Ada binding has not yet begun. If
the POSIX realtime extension cannot be well integrated with Ada tasking, Ada programmers
in a POSIX environment may end up working directly with the POSIX process and thread
abstractions, instead of Ada tasking. That is, the POSIX realtime extension may force a choice
between POSIX and Ada, or at least a choice between a POSIX model of concurrency and
Ada's.

6.5 Prototype implementation

As part of this project, we had sufficient resources to do some experimentation with Ada runtime
interfaces. We chose to apply our efforts to implementing, in prototype, as much of the draft
POSIX realtime extension as we could, since the POSIX realtime extension is a draft in C-
language form, with no work yet started on an Ada binding and no complete implementation.
A prototype implementation could be helpful in providing timely feedback on the draft C-
language binding, and could speed up the future development of an Ada binding. A prototype
implementation would also be useful as a basis for evaluating both the direct utility of the
POSIX realtime extension and its potential for implementing Ada tasking.

The only practical way to produce a rapid prototype of the POSIX realtime extension was to
start with an existing UNIX implementation. We chose to start from the Sun Microsystems
UNIX (SunOS) operating system, because we had the source code and the computers to compile
and run it. Since SunOS is written in C, this meant programming in C. The work involved
modification of the SunOS kernel and other portions of the operating system.

The POSIX realtime extension prototype includes (in order of completion):

1. scheduling and priorities (Section 6 of 1003.4);

2. semaphore special files (Section 3 of 1003.4);

3. shared memory special files (Section 5 of 1003.4);

4. a restricted form of timers (Section 8 of 1003.4).

The motivation behind these choices is that these features seemed to be a minimum set needed
to begin experimentation with realtime programs. They also appear to be a minimum set
necessary to provide functionality similar to Ada tasking, and perhaps to serve as a basis for a
one-process-per-task implementation of Ada tasking.
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The prototype implementation attempts to follow the draft POSIX realtime extension, but is
not completely compliant. The differences are generally minor. They are mostly due to our
desire to fit the extension within the framework of the basic SunOS implementation, and in
particular our need to stay within the limitations of the Sun Network File System (NFS) since
the development and testing could only be done on a diskless machine.

A more detailed discussion of the prototyping of these three features is presented in Appendix A.

6.6 Evaluation

It is still too early to make firm conclusions about the POSIX realtime extension. Not only is
the standard still only in draft form, but there is little or no experience on which to base an
evaluation. Our prototype implementation only added a little to this.

It is not yet clear whether POSIX can be implemented efficiently enough to meet the needs of
hard realtime applications. However, it is likely to be very useful for nonembedded systems
where realtime and nonrealtime processes run on the same computer. It is also likely to be very
useful for prototyping realtime systems, on a development host.

Based on our prototype implementation, the POSIX realtime extension appears to offer a
dramatic improvement in speed, predictability, and utility over both basic POSIX (1003.1) and
the UNIX system on which our prototype was based. In short, the extension permits writing
portable realtime applications - a thing which cannot be done in basic POSIX or UNIX. Using
the features in our prototype we were able to obtain reliable control over execution timing down
to the 20 millisecond range 3.

One of the main weak-points of the draft POSIX realtime extension is its heavy reliance on the
POSIX file-system name space for semaphores, shared memory, message queues, and all other
named objects. Since there is no type distinction between different kinds of file descriptors,
all operations must be implemented so as to be safe for all file types (e.g. a semaphore wait
operation might be applied to a pipe or terminal device, erroneously). For the same reason,
essentially all operations will require switching to kernel mode. (Our experiments with a proto-
type implementation lead us to believe this amounts to about 100jus overhead per system call.)
For these and other reasons the utility of the POSIX realtime extension is likely to be limited
to applications with fairly loose timing constraints.

POSIX is a general purpose operating system, so support for realtime applications requires
compromises. One of these compromises is some extra overhead for realtime applications, to
support features that are not ordinarily required in a pure realtime operating system. This
overhead will be noticeable, but it is not yet clear how far it can be reduced by heuristics,
or what range of applications will be able to tolerate it. Non-realtime applications are also
compromised. In order to provide timely service to realtime processes, other processes may be
denied service.

The POSIX realtime extension takes an approach to scheduling that beats Ada three ways.
POSIX provides a choice of two well-defined scheduling policies (FIFO and round-robin), and

3The resolution of the Sun workstation clock.

26



permits the policy and priority to be changed dynamically on a per-process basis. In contrast,
(1) Ada's scheduling policy (priorities) is not completely defined, (2) it provides no choice
of scheduling policy, and (3) it does not permit scheduling policy or parameters (priority) to
be changed. Both POSIX and Ada allow implementations to provide nonstandard scheduling
policies, but POSIX provides options in the standard interface for selecting nonstandard policies,
while Ada specifies nothing.

The POSIX realtime extension also standardizes a higher level of support for realtime appli-
cations than Ada does in other areas. Among these areas are timer precision, control over
synchronism/asynchronism of I/O, and asynchronous communication. Like Ada, the POSIX
realtime extension does not impose absolute performance requirements, but it does improve on
Ada by defining performance metrics for its features.

All this does not mean POSIX is necessarily "better" than Ada tasking for hard realtime ap-
plications. First, Ada is a language, and POSIX is an operating system interface. It should
not be surprising if the POSIX realtime extension is a better operating system interface than
Ada. (Certainly, it is not surprising that Ada is a better language than POSIX!) Second, we
are comparing standards rather than implementations. As a standard, POSIX requires more
RTE services than Ada. Of course, Ada implementations designed for embedded realtime sys-
tems offer implementation-defined features which go beyond the Ada standard. For embedded
applications, Ada implementations are likely to be able to offer far better performance than
any POSIX-compliant realtime operating system, because they do not have to support all of
the general-purpose operating system features that POSIX does.

Those responsible for the Ada 9X revision can learn from the POSIX realtime extension. At
least, they can learn to provide both more concrete default semantics and implemention-defined
options, for details Ada currently leaves to the language implemenation. They may also find
some specific capabilities that might be added to Ada, but perhaps this should be left to
secondary standards like POSIX.

It remains to be seen whether an Ada interface to the full POSIX realtime extension can be
provided that is compatible with the Ada tasking model. This issue deserves more attention as
the POSIX realtime extension solidifies. If our prototype implementation is extended further,
it may be helpful as a tool for answering this question.
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7 Conclusion

We have examined the role of the Ada language and common package interfaces for the Ada
runtime environment in the development of reusable software, especially for realtime applica-
tions. More specifically, we have looked in depth at the MRTSI developed by ARTEWG, the
POSIX Ada binding, and the POSIX realtime extension. For evaluation purposes, we have
developed a partial prototype implementation of the POSIX realtime extension, including the
realtime scheduling and semaphore-management functions.

Though the Ada language supports software reuse, there are several ways in which Ada might
be revised to improve it in this regard. We have pointed some of these out.

One of the ways Ada supports reuse best is via package interfaces. Agreement on common pack-
age interfaces for frequently needed components would promote reuse of both those components
and applications which rely on them. Such package interfaces can serve as bridges between
reusable and nonreusable code, enabling components that depend on them to be reused even
when the package bodies cannot.

A standard compiler-RTE interface, like the MRTSI, could promote reuse of Ada software,
if commonly adhered to. Compilers and RTE implementations would be more reusable. In
particular, realtime RTE implementations could be reused across compilers. Since realtime
applications typically must depend on implementation-specific features of the Ada RTE, this
would in turn promote reuse of realtime applications.

The POSIX standard interfaces also could promote reuse of Ada software. They provide a
standard interface for operating system services that are required by many Ada applications,
but which are not provided by the Ada language. Without a standard Ada interface, Ada
programs requiring these services cannot be reused without code changes; with a standard
interface, they can be. Work on Ada versions of these interfaces is therefore important.

The basic POSIX interface (1003.1), for which the Ada binding is currently being developed,
provides services that are mostly needed by nonrealtime applications, including Ada compilers
and softwar- development tools. In contrast, the POSIX realtime extensions can directly benefit
realtime applications. In addition to directly supporting realtime applications, the realtime
extension may support portable Ada RTE implementations.

How much the POSIX realtime extension helps realtime applications will depend on how it
evolves between now and the time it is formally adopted as a standard, and how efficiently it
can be implemented. Based on our partial prototype, it already provides enough functionality
to write portable realtime applications with timing constraints measured in tens of milliseconds.
While this is far below the capabilities of the best embedded realtime Ada implementations, it
is far better than the worst permitted by the Ada standard.

The POSIX realtime extension provides more standard support for realtime applications than
the Ada language does. However, POSIX also provides many general-purpose operating system
features that are not required by realtime applications. Supporting all this will undoubtedly
force POSIX implementations to compromise on the efficiency of their support for realtime.
It remains to be seen how wide a range of realtime applications will be able to tolerate this
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compromise.

The strengths of the POSIX realtime extension will probably turn out to be: application
portability; the ability to mix (soft) realtime applications with ordinary applications; the ability
to prototype embedded realtime applications in a convenient development environment, without

need for tedious crobs compilation, downloading, and cross-debuggers.

Organizations committed to using Ada should beware of the strong linkage between POSIX
and the C progTamming language. Using POSIX as an operating system interface will bring
pressure to use C as a programming language. This pressure will be aggravated by the time
lag between the introduction of C-language bindings for POSIX and its extensions and the
development of Ada bindings. A short term solution to the lack of Ada bindings to write Ada
applications using pragma INTERFACE to access the C-language POSIX interfaces. However,
Ada code near the interface is likely not to be portable across compilers. Of course, there is
the option of switching from Ada to C, but that decision should be made on the merits of
the language (where Ada would probably win) rather than indirectly through the choice of
operating system interface.

Issues needing further study. Based on our study, the following issues appear to need
further study:

1. Testing of the MRTSL The concept of a standard compiler-RTE interface needs testing.
(As mentioned in Section 4.1, this issue is apparently being addressed by the U.S. Air

Force.)

2. RTE-internal interfaces. Standard "bridging" interfaces for internal RTE modules that
are most likely to need application-specific tailoring could greatly improve the reusabil-

ity of the rest of an Ada RTE implementation. Suitable internal interfaces should be
identified, and the concept tested. Possible candidates include the timekeeping and task
scheduling functions.

3. Ada binding for realtime extension. An Ada binding needs to be developed for the POSIX

realtime extension. Work should start right away, rather than waiting until the Ada
binding for basic POSIX (1003.1) is complete.

4. Evaluation of realtime extension. A more complete prototype of the POSIX realtime

extension should be developed and tested. (Work along this line appears to be going on

among UNIX vendors.)

5. Ada on realtime extension. An attempt should be made to implement an Ada RTE using
the features of the POSIX realtime extension. Ideally, both the process-per-task and
thread-per-task model should be explored.
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A Report on prototyping activity

A Prototype POSIX Realtime Extension

Jim Hudgens and Jim Groh
the Florida State University

This appendix describes some of the issues encountered during the course of work on prototyping
portions of the proposed POSIX realtime extension (1003.4) for the IEEE standard Portable
Operating System Interface for Computer Systems (POSIX). The four features implemented
are: (1) scheduling; (2) binary semaphores; (3) shared memory; (4) realtime timers. The latter
two were only partially implemented.

This work was carried out by modifying the C-language source code of the SunOS (V4.0).

A.1 Scheduling

The implementation of realtime process scheduling was rather interesting. It was relatively
difficult to design a match for the POSIX semantics within the context of the SunOS code.
However, once the design work was done, the actual changes were relatively small. Aside
from the actual implementation of new system calls, for scheduling, very little code had to be
modified to achieve a compliance with the POSIX realtime extension.

The POSIX realtime extension provides a specific set of interfaces which allow a user program
to directly (and almost deterministically) control its allocation of CPU time. In the normal
SunOS a program cannot do much to affect its allocation of CPU time; it can only change its
"nice" value.

The changes required to implement the extension involved:

1. Modifying the priority mechanism so that the priority of a process can be controlled by
the application program instead of the kernel scheduler.

2. Changing the mechanism by which the runnable processes are queued and dispatched.

3. Changing the manner in which a preemption is handled.

The normal scheduling paradigm under UNIX is generally described as a prioritized multi-queue
round-robin scheme. It has the following characteristics:

1. Periodically (once every second, for SunOS) a running process has its priority modified,
based on its current usage of the CPU. This is done in the routine schedcpu. The process's
position in the run queues is modified, if it is runnable.
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2. Periodically, (once every lOOms, for SunOS) a kernel thread awakens and sets a flag which
is used to force a context switch. This is done by the routine roundrobin. The process
which is running at that point is preempted upon return to user context. The effect is to
force the processes at each priority to alternate execution in a round-robin manner.

3. If a process blocks on a system call, its priority is raised (to a more urgent priority). This
does not change under the POSIX realtime extension.

4. When the kernel dispatches a process to the CPU, it always chcoses the runnable process
with the highest priority. This dispatching occurs in the routine swtch.

5. When a running process makes a switch from user to kernel mode, if it does not block
in the system call (generally via sleep), it may be preempted (inside routines trap and
syscall) when attempting to return to user mode if there is a higher priority process which
is runnable.

The POSIX realtime extension does not follow this paradigm. In particular, realtime POSIX
processes are not all treated identically by the scheduling system. A set of new system calls
have been added which allow a process to identify itself to the operating system as a realtime
process.

The new process types are defined in the following way. (This is paraphrased from a draft of
the POSIX realtime extension.)

FIFO processes:

" When a FIFO process becomes blocked and is set runnable, it becomes the newest process
on the list for that priority.

" When a FIFO process is preempted, it becomes the oldest process on the list for that
priority.

" When the priority of a FIFO process is changed, it becomes the newest process on the
list for that priority.

Round-robin processes:

e This is identical to FIFO except that at RRINTERVAL intervals, a round-robin process
is replaced on the list for that priority at the newest position.

In implementing the above specifications we had to make the following changes to the SunOS
implementation:

1. The routine schedcpu still recalculates the priority of all processes; however, it does not
change the priorities of processes which are marked as realtime. This means that a process
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which is to be treated as a realtime process must be marked as such in its p-ocess structure.
We used two flag bits to represent the realtime status of a process:

00 = SCHED_ OTHER
10 = SCHEDRR
11 = SCHEDFIFO

If the high bit (common to both SCHED_ RR and SCHED_ FIFO processes) is set, then
the process is treated as a realtime process, and its priority is changed only via system
call; the dynamic kernel priority mechanism is disabled for this type of process.

2. The routine roundrobin still runs periodiallv at 100ms. It still sets the flag for a context
switch, regardless of the type of the process currently executing.

3. When a process makes a system call, if it is a realtime process, its priority is changed,
but only if that change increases the priority.

4. The dispatch function of the kernel is identical; no changes were necessary.

5. When a process attempts to return to uaer context, it may be possible that the system
considers it to be preempted. The treatment here is special, because if it is a FIFO or
a round robin process being preempted, then it should go back to the front of the run
queue. This is handled by the code in trap.c and in the assembly routine vax. s. In
trap. c, in the routines trap() and syscallO, -ode was added to handle the case where
the current process is to be preempted, and it is either a FIFO process, or it is a round
robin process and its time slice has not expired (this is approximated). In either case,
an additional bit is set in the process flags, which tells the assembly routine setrqO to
enqueue this process at the front of the run queue for that priority.

6. Four system calls were written which change the process priority and the process schedul-
ing algorithm. The range of SunOS internal priorities ranges from 0 (highest) to 127
(lowest). There are (under the current implementation) 32 run queues. with four priority
levels assigned to each run queue. Since the semantics associated with the POSIX rez!
time extension require that processes of different priority be in different queues, we can
support at most 32 POSIX realtime priorities. Of the available 128 internal priorities,
those in the range 0 to 24 (i.e. those reported to be in the range -25 to -1 by ps) are
probably not safe to use for user processes, so we are left with a usable internal priority
range of 127 to 25, and a usable POSIX realtime priority range of 0 (PRIOMIN) to 25
(PRIOMAX). 4 Thus, the translation between POSIX and interna! priorities may be
expressed in C macros, something like:
#define INTERNAL- TO-_POSIXRT(z) (31 - (x)/4)
#define POSIXRTTOINTERNAL(x) (127 - (x) * 4)

7. The system calls rt-setpriority and rt-setscheduler were carefully written to conform to
the 1003.4 semantics, which deal with the sequence of events which happen when a process
sets the priority of another process.

8. The fork system call had to be changed to force the above semantics to be inherited across
a fork call.

4The order of the two ranges is reversed intentionally, to reflect the difference between the interpretations of
POSIX and SunOS internal priorities. Also, the ranges of nor: i process priorities and realtime process priorities
overlap, as is permitted by POSIX.

33



The result of this effort is a scheduler which has very different characteristics from the normal
scheduler. However, without a synchonization mechanism it is difficult to predict or control
-'rocess execution sequences, due to race conditions. In particular, the execution sequence
associated with the creation of new processes seems to be particularly difficult to synchronize.
Fortunately, this can be solved using semaphores.

A.2 Semaphores

A standard solution to the synchronization problems in a multiple process system typically
involves semaphores and shared memory. It was for this reason that we attempted an imple-
mentation of the semaphore primitives as described in the POSIX realtime extension.

One major difficulty in attempting to implement the POSIX realtime semaphores is a result of
the semaphores being identified in the filesystem name space. In particular, adding support for
semaphores to the existing kernel code also required modification to existing code dealing with
filesystems, and doing so in a manner which does not break existing filesystem functionality.

There were several major logistic problems in attempting to implement this set of system
calls; the two biggest being lack of time and lack of a dedicated machine with disk drive to
test the resulting kernel. For this reason, the implementation of semaphores is only partly
correct. However, it is correct in the "spirit" of the POSLX realtime extension; the defects
are mostly minor deviations from the 1003.4 specifications, and some rather inelegant kernel
modifications. The current implementation of semaphores interfaces to the filesystem code is
based on the SunOS version of the System V named-pipes. The difficulty is t(. get the files
created and identified as "semaphore special files", without making any modifications to the
network server filesystem code. The only low-level code which was changed dealt with NFS
mounted files. None of the kernel code has ever been tested on machines having local disk
drives, since none were available for this purpose.

The upper-level code for creating a j accessing semaphores seems correct and fits cleanly into
the rest of the filesystem code. All the system calls dealing with semaphores share the same
entry point, through a routine called rtsemO. The system call for rt_ mksem calls the file create
operation. vn.createO, and passes a new attribute type: VSEM. The vn.create0 routine in
turn calls the filesystem specific , uutine, rfs_ create(). The routine nfs_ create() fakes the remote
operation (actually creates a pipe), and then calls a special routine needed for special files, called
specfsO. The routine specfs( deals with special files and devices, and when passed arguments
for a VSEM file, calls the routine semspO which allocates the vnode for the semaphore, and
associated storage for the queuing of processes. The parts of this scheme which are inelegant
involve the faked create in the routine nfscreateo. The outcome of this is that one cannot
possibly get the semantics of a persistent semaphore (SEMPERSIST), since there is nothing
in the actual created file which identifies it as a semaphore, much less the actual status of
the semaphore. It also appears that the semantics defining the last close of a semaphore (or
files in general) might )e incorrect, in that if a semaphore file is created with initial state
SEM_. LOCKED, it retains that state even though it is not held open L" any process between
the time of creation (via rt_ mksemO) and the time of its first open.

Any of the calls which are passed the file descriptor of a semaphore special file then use the
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default "descriptor to vnode" lookup routines.

In a call to rt-semwaitO, if the semaphore is in state SEAl._ LOCKED the process enters a new
process state, SSEM, and is queued on the semaphore vnode in ascending priority. A context
switch then occurs. Otherwise the process locks the semaphore and continues execution.

In a call to rt-semposto, if the semaphore is in state SEMLOCKED but has no queued
processes, the call allows the process to proceed and the semaphore is set to state SEM_-
UNLOCKED. If the semaphore is locked and has queued processes, the first process is dequeued
and set to a runnable state, and the semaphore remains in state SEM-LOCKED. As a final
note, these calls will only work for semaphore files which reside on NFS mounted filesystems.
No disk based filesystem code was modified or included with this system.

The rt semifpost( and rt-semifwait( calls behave similarly, except as described in the draft
POSLX realtime extension document.

This implementation differs from the System V implementation in that:

1. It uses the file system.

2. The semaphores are binary.

3. The sleep mechanism involves only processes waiting on the same semaphore.

4. The wakeup mechanism is potentially much fzster, because the processes are queued in
ascending priorities.

However, it is possible that using the filesystem name space could be a real handicap in terms
of speed of access. In this implementation no attempt was made to optimize the translation
from file descriptor to the corresponding vnode, nor was any attempt made to determine if the
implementation had comparable or better speeds than the corresponding System V calls.

A.3 Shared Memory

Another major component in a realtime application is a mechanism concurrent processes to
share memory resources. This feature is included in the POSIX realtime extension. It is both
conceptually simpler and easier to implement than message passing, which is also included.

Most of the same difficulties encountered in the implementation of semaphores were also en-
countered in the implementation of the shared memory. Additionally, we were hampered by
a lack of general documentation on the kernel memory management routines, which tend to
be somewhat hardware (vendor) specific. For these reasons, the implementation of memory
system calls are only approximately correct, and not well tested.

The upper-level code for creating and accessing shared memory seems correct and fits cleanly
into the rest of the filesystem code. All the system calls dea!ing with semaphores share the
same entry point, through a routine called rtshmO .
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The system call for rt rmkshm calls the file create operation, vn_ create 0, and passes a new
attribute type: VSHM. The vn.create() routine in turn calls the fiesystem specific routine,
nfs_ createo. The routine nfs- create( fakes the remote operation (and actually creates a pipe),
and then calls a special routine needed for special files, called specfso. The routine specfs( deals
with special files and devices, and when passed arguments for a VSHM file, calls the routine
shmsp() which allocates the vnode for the shared memory file, as well as allocating structures
(struct anon) which are managed by the kernel memory management routines. When the call
to vn- create returns, the actual memory is allocated.

When the file is mapped, most of the arguments are ignored. The only argument which is not
ignored is the file descriptor. We let the system choose a virtual address at which to map the
memory, and then map the entire memory into the process's address space. The code which
does this is modeled after the code for System V shared memory. It consists of a call to the
routine map_ addrO, followed by a call to asmapO. So by ignoring most of the arguments
to rt- mapo, much of the semantics to this call are lost. In addition, the semantics associated
with exit and fork may or may not hold. And as in the semaphore case, the parts of this scheme
which are inelegant involve the faked create in the routine nfs_ createQ. The outcome of this
is that one cannot possibly get the semantics of a SHM_ PERSIST, since there is nothing in
the actual created file which identifies it as a shared memory, much less the actual memory
allocation. As in the case of semaphores, this call only works on NFS mounted partitions,
which reflects the development environment.

We are certain that many aspects of the implementation are correct, such as the filename to
memory mapping, and that the rt_ map call actually does map in memory which can be shared
with other processes. This is the functionality we needed to prototype %nd test systems of
processes, and to write the demonstration program BANDSDEMO.

A.4 Realtime timers

The realtime timer feature of the POSIX realtime extension was partially implemented, because
some form of timer was necessary to write test cases for the other features. This is incomplete.
Also, due to limitations of the Sun hardware (i.e. 10ms clock ticks), it does not meet the
requirements for precision of the POSIX realtime extension.

A.5 Summary

The prototype implementation of a subset of the POSIX realtime extension appears to function
correctly, and has proven adequate for experimental evaluation of the utility of the features
which are supported. It also seems to be a useful tool for prototyping realtime applications on
a UNIX development host.
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B Demonstration program

BANDS_ DEMO is a program that was designed as a tool to study the execution sequences of
multiple processes in a priority-based scheduling system, uziag various scheduhing algorithms.
The program is designed so that each process can be described in terms of its priority, period,
execution time, and the scheduling algorithm used. The output of the program is a graphical
display, which is somewhat similar to a Gantt chart. The display is designed to show (in an
approximate way) the execution sequence of the system of processes.

a, To utilize this software, you need the following:

1. A diskless Sun 3/50 or Sun3/60 running SunOS 4.0 or later.

2. A server server running SunOS 4.0 or later, having a quarter inch tape drive.

3. Our modified SunOS kernel.

4. The BANDS-DEMO source and/or binaries.

The BANDSDEMO program is described in the Postscript document BANDSDEMa .ps. The
kernel modifications are described in posix-rtkernel.ps.

Included on the distribution tape are the following files and directories:

-rw-rw-r-- 1 hudgens 5310 Sep 3 14:51 README
drwxrwxr-x 4 hudgens 1536 Sep 10 17:31 c-bands
drwxrwxr-x 7 hudgens 2560 Sep 10 22:41 ada-bands
-rv-rw-r-- 1 hudgens 25612 Sep 3 14:51 BANDSDEMO.ps
-rw-rw-r-- 1 hudgens 25612 Sep 3 14:51 posix-rtkernel.ps
-rw-r--r-- 1 hudgens 619467 Jul 31 09:00 vmunix

The c-bands directory contains a C-language version of the BANDS-DEMO program, as well
as all necessary files required to make it. The adabands directory contains the corresponding
version of the program in Ada. The vmunix file contains a bootable kernel. The other files are
documentation which can be printed on any Postscript printer.

To use the system, do the following:

1. Locate a diskless Sun3/50 or Sun3/60 workstation.

2. Copy the contents of the distribution tape to this client's tmp directory. For example:

server% cd /export/root/client/tmp
server% mkdir bootdir
server% tar xvf /dev/rst8
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This step can be done in several other ways, using rsh.

3. Halt the client system:

client* shutdown now

# halt

4. Boot the client using the new kernel:

> b tmp/bootdir/vmunix

5. Log in and start the demo:

client%. cd /tmp/bootdir
client%. cd c-bands
client. BANDS-DEMO

client. cd ../ada-bands

client% BANDSDEMO

The demo can be stopped using the interrupt character (i.e. control-C).

Read the detailed documentation (mentioned above, provided in Postscript form) before you
attempt to use this demo. It includes examples of how to interpret the graphical output.
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NOTE

The documentation and files for the BANDSDEMO program are not included with this re-
port. If you require further information on the demonstration program, please contact Mary
Bender, 201-544-2105 (AV 995-2105)
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